Mutational analysis reveals a dual role of Mdm2 acidic domain in the regulation of p53 stability.

نویسندگان

  • Pavlina Dolezelova
  • Katerina Cetkovska
  • Karen H Vousden
  • Stjepan Uldrijan
چکیده

The exact role of the central acidic domain of Mdm2 in p53 degradation remains unclear. We therefore performed a systematic and comprehensive analysis of the acidic domain using a series of short deletions and found that only a minor part of the domain was indispensable for Mdm2-mediated p53 ubiquitylation. Moreover, we identified a short stretch of acidic amino acids required for p53 degradation but not ubiquitylation, indicating that, in addition to p53 ubiquitylation, the acidic domain might be involved in a critical post-ubiquitylation step in p53 degradation. Rather than representing a single functional domain, different parts of the acidic region perform separate functions in p53 degradation, suggesting that it might be possible to therapeutically target them independently.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

MDM2 protein-mediated ubiquitination of numb protein: identification of a second physiological substrate of MDM2 that employs a dual-site docking mechanism.

The E3 ubiquitin ligase, MDM2, uses a dual-site mechanism to ubiquitinate and degrade the tumor suppressor protein p53, involving interactions with the N-terminal hydrophobic pocket and the acidic domain of MDM2. The results presented here demonstrate that MDM2 also uses this same dual-site mechanism to bind to the cell fate determinant NUMB with both the N-terminal hydrophobic pocket and the a...

متن کامل

Inhibition of p53 DNA binding function by the MDM2 acidic domain

MDM2 regulates p53 predominantly by promoting p53 ubiquitination. However, ubiquitination-independent mechanisms of MDM2 have also been implicated. Here we show that MDM2 inhibits p53 DNA binding activity in vitro and in vivo. MDM2 binding promotes p53 to adopt a mutant-like conformation, losing reactivity to antibody Pab1620, while exposing the Pab240 epitope. The acidic domain of MDM2 is requ...

متن کامل

The Role of Tumor Protein 53 Mutations in Common Human Cancers and Targeting the Murine Double Minute 2–P53 Interaction for Cancer Therapy

The gene TP53 (also known as protein 53 or tumor protein 53), encoding transcription factor P53, is mutated or deleted in half of human cancers, demonstrating the crucial role of P53 in tumor suppression. There are reports of nearly 250 independent germ line TP53 mutations in over 100 publications. The P53 protein has the structure of a transcription factor and, is made up of several domains. T...

متن کامل

MDM2 interaction with nuclear corepressor KAP1 contributes to p53 inactivation.

MDM2 is a RING domain ubiquitin E3 ligase and a major regulator of the p53 tumor suppressor. MDM2 binds to p53, inactivates p53 transcription function, inhibits p53 acetylation, and promotes p53 degradation. Here, we present evidence that MDM2 interacts with the nuclear corepressor KAP1. The binding is mediated by the N-terminal coiled-coil domain of KAP1 and the central acidic domain of MDM2. ...

متن کامل

Heterodimerization of Mdm2 and Mdm4 is critical for regulating p53 activity during embryogenesis but dispensable for p53 and Mdm2 stability.

Mdm2 and Mdm4 are homologous RING domain-containing proteins that negatively regulate the tumor suppressor p53 under physiological and stress conditions. The RING domain of Mdm2 encodes an E3-ubiquitin ligase that promotes p53 degradation. In addition, Mdm2 and Mdm4 interact through their respective RING domains. The in vivo significance of Mdm2-Mdm4 heterodimerization in regulation of p53 func...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • FEBS letters

دوره 586 16  شماره 

صفحات  -

تاریخ انتشار 2012